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MORE ON CUMULATIVE SEARCH EVASION GAMES

1. INTRODUCTION

Eagle and Washburn (1990) introduced Cumulative Search Evasion

Games (CSEGs) as two-person zero sum games where the cumulative payoff

T
over T time periods is JT

x
A{x

t ,yt ,t),Xi and y t being the locations of searcher

and evader, respectively, at time t. A path for the searcher is a sequence

x\, ..., x T where *i€ So and x t+\ € S(x t,t) for t > 1, the sets So and S(»,*) being

given, and similarly for the evader except y\ € £o and y t € E(y
t , t). All of these

sets are nonempty subsets of Cs a given finite set of "cells." A mixed strategy

for the searcher is a probability distribution over paths. Let p(x,t) be the

corresponding marginal distribution, the probability that the searcher

occupies cell x at time t, and let q{y ,t) be defined similarly for the evader.

T
Then the expected payoff is Y £ £ A(x,y, t)p(x,t)q(y,t) . This observation,

together with the observation that the optimization problem for one player

when the marginal distribution of the other is given is a shortest or longest-

path problem, formed the basis of two solution methods for solving CSEGs:

Fictitious Play and Linear Programming (LP). Only the LP method will be

discussed here.

One might hope to formulate an LP for the searcher in which the only

variables needed to describe the searcher's mixed strategy are p(x,t), since

those suffice to express the expected payoff. However, Eagle and Washburn

found it necessary to introduce the joint probabilities



u(i,j, t) = probability that the searcher occupies cell i at time
f-1, and cell / at time r,

together with network constraints to the effect that probabilities "flowing"

into and out of a cell must balance. The necessity to include these joint

probabilities is disappointing, since in large problems there are many more

u-variables than p-variables. One of the goals of this paper is to show that the

w-variables can be avoided in certain one-dimensional CSEGs. This is the

subject of the next section. Using only the p-variables makes it possible to

solve larger CSEGs than would otherwise be possible.

The other goal of this paper is to show that the payoff at time t in a CSEG

can be generalized to A{x
t.\, x t , y t-\, yt, if the u-variables are retained. The

required theorems and LP formulation, together with an example illustrating

the value of the generalization, is the subject of Section 3.

2. THE ONE-DIMENSIONAL CSEG

In this section the positions of both parties must at all times be in the set of

cells C = {1, ..., N},N > 1, with transitions from i to / at t being permissible if i €

C, / e C, and |i-/| ^ 1. These rules define £(•,•) and S(»,*). The payoff

function A{i,j, t) is unrestricted.

Suppose for the moment that the searcher's marginal probabilities p(i, t)

were known to the evader, in which case any evader path that visits cell ;' at

time t must pay a penalty ("penalty" because the evader is the minimizer) of

V p(i,t)A(i,j,t). Let g(j, t) be the minimum possible cumulative payoff from

ieC
time t onwards, given that the evader occupies cell / at time t. Then, taking

#(•, T + 1) = for convenience, #(• , •) must satisfy the recursion



SO'/O- J[p(i,t)A(i,j,t)+ mm*(k,t + l)}) eC,l<t<T (1)

Since the evader must be in £o at time 1, the minimum possible payoff is

ming(/,l), which the pursuer wants to maximize. This leads to the following
;e£o

Linear Program:

maximize go

subject to £ - s(y> 1) * 0; / e £
/

g{j<t) - 5>(i,0<A(i,/,f) -^(fc,r + l)<0;j eC,l<t<T,k £E(j,t),

and some feasibility constraints on p(*, •).

Eagle and Washburn employed the u- variables in expressing the

feasibility constraints on p( 9
,

• ). The object here is to find a way of

expressing those constraints without defining any new variables. First we

prove

Theorem 1. In the one-dimensional CSEG, p(* r •) is feasible if the following

feasibility constraints hold:

2>U)-i
j'eSo

it jfc+i

(left) £p(i,t + l) - £p(l,0 ^0 ;l<k<N;l<t<T

A/ N
(right) £p(i,f+l)-Yp(U)^0 ;1 < A: <N;1< t < T

Hfc+1 i=k

N
£p(i,«-i ;i<^T

/7(z,f) >0 ;1 </< N;l<f <T



Proof: Assume that the feasibility constraints hold, and consider the

proposition Pj that there exists a feasible stochastic searcher motion process

for which the marginal distributions are p(*,t); 1 < t < T. P\ is clearly true,

since the feasibility constraints in that case require only that the searcher begin

in So- If it can be shown that Pj implies Pr+i, the theorem will be established

by induction. Toward this end, let cells 1, ..., N at time T be "sources" with

probability p, * p{i, T) each, and let the same cells at time T + 1 be "sinks" with

probability q x
= p(i, T + 1) each. To establish Pj+i, it is sufficient to show that

there exist N 2 joint occupancy probabilities Uu such that

X =i
w

'7 ~Vi> X W/
7
=

Qj' anc* u,
i
= ® un ^ ess j € E('/ 0/ tne latter constraint

reflecting the requirement that transitions beyond neighboring cells are not

allowed. In other words, it must be possible to "ship" a unit of probability

from sources to sinks, with u« being the amount shipped from source i to sink

;'. The "left biased" method (LB) below is one constructive method for

accomplishing this. LB proceeds through the sources in increasing order,

shipping probability to the lowest numbered sink that is not yet satisfied until

the source being considered is exhausted, then proceeding to the next source

until all N sources have been considered. If LB makes u« > for some i and

some / < i - 1 (alternatively ;' > i + 1), we say that a left (alternatively right)

difficulty occurs at node i. To complete the proof it is required to show that

no difficulties of either type can occur as long as the feasibility constraints

hold.

Suppose that no difficulties occur in cells 1, ..., k - 1, but that a left

difficulty occurs in cell k (necessarily k > 3, since left difficulties are not

possible in cells 1 and 2). Since all of the probability in sources 1, ..., k-\ can



be shipped to sinks 1, ,..., k - 2 without satisfying one of those sinks (otherwise

the left difficulty could not occur in cell k), necessarily

k-2 jt-l

i=l i-1

But this inequality is in the opposite sense of one of the left constraints, so a

left difficulty cannot occur in cell k. Suppose instead that there is a right

difficulty. A right difficulty occurs for the first time in cell k only if there is

more probability in sources 1, ..., k than is required to satisfy sinks 1, ..., k + \>

so

Jfc+1 k

i-1 i-1

Since (pi) and (^,) are both constrained to be probability distributions, it

follows that

N N

i=fc+2 i-fc+1

But this contradicts one of the right constraints, so right difficulties cannot

occur either.

Since neither right nor left difficulties can occur, LB will discover a

feasible set of joint probabilities w,y. This completes the proof.

Obviously there is a symmetrically defined "right-biased method" that

will discover a possibly different set of feasible joint probabilities. In fact

there are many such methods and many feasible sets of joint probabilities.

Formulating the searcher's linear program without reference to these joint



probabilities has the advantage of eliminating many alternate optima, in

addition to the computational savings achieved by eliminating variables. The

revised formulation, with dual variables shown in braces, is program LP:

maximize^

subject to go-g(j,l)<0 ;/€E fo(;,l)}

N
gij,t) - £ p(i,t)A{i,j,t) - g(k,t + 1) < ;/ eC,l < t < T,k€E(j,t) {v(j,k,t+l)}

1-1

N
g(j,T)-£p(i,T)A(i,j,T)<0 ;/€C {q(j,T)}

j'-l

ieS

k fc+1

£p(i,f + l)- £p(i,f)<0 ;l<fc<N,l^r<T {/(M)}
;=l i-i

N N

£ p(i,f + D- £p(z,f)<0 ;ia<N,l<f<T MM)
i-fc+1 i-Jfc

N

Ip(U)=l ;Kf<T ft}
;=l

It has been established so far that the value, v, of the CSEG is at least go-

The possibility still remains that v > go. To establish v = go, the dual of LP will

be shown to be a Linear Program whose objective function is an upper bound

on the game value. Consideration of the dual will also provide

interpretations of the dual variables in LP; the notation used above anticipates

that q(j,l) can be interpreted as the probability described earlier, for example,

but that fact has yet to be established formally.

N
The dual of LP involves the sums £ /(fc,f) s L(z,f) and

£ k
.r(k,t) s R(i,t). For compactness we will write £(•,•) and #(•,•) below,

even though the sums are actually meant, and we will also use the convention



that L(0,t) - L(l,t) and R(N+l,t) = R(N ,t). Note that, since /(•,•) and r(»,») are

nonnegative, L(»,t) and R(*,t) are nonincreasing and nondecreasing cell

functions, respectively, for 1 < t < T. Finally, the set E*(i,t) consists of those

cells from which the evader at time t-1 can transition to cell fat time t. The

dual of LP is DLP:

T

minimize Y h
t

N
subject to h

x
- £ A(i,/\1) Y v{j,k,2) - L{i - 1,1) - R(z + 1,1) >

;=1 Jt6£f;,l)

;ies {p(/,i)}

N
^ - £ A(i,;',*) £ i>(/,*,t + 1) + L(U - 1) + R(i,t - 1) - L(i - 1,0 - R(i + l,f) >

;-l *€E(;,f)

;i£C,Kt <T {p(i,t)}

N

£ A(/,;',T)<7(;,T) + L(z,T - 1) + R(i,T - 1) >

/'-I

5>(*,/,t + l) - £t>(*,i,f)-0

/€£(/,*) fceE*(U)

9(fc,T) - £i>(/,lfc,T) =0
/'€£»(* ,T)

k€E(/,l)

i€£

i>(i,/,f)>0; /(z,0>0; r(i,t)>0; q{i,l)>0; q{j,T)>0

;i eC {P(ij)}

;i eC,l <f <T \g(i,t)}

;k eC {g(k,T)}

;j£C fe(;M)}

/ (So)



The last four sets of constraints in DLP have the effect of requiring that

q(*,*) be a feasible marginal distribution for the evader, with v(*,*,*) being

the joint occupancy probabilities. The first three sets of constraints can be

N
simplified somewhat by defining y(i, * £ -l^'^'^XjteEf t)

v^'^' t + ^' so

that y(i,t) is the average payoff to the searcher at time t if he occupies cell i at

that time, and also L( # ,T) = R( 9 ,T) = 0. In that case the first three sets of

constraints can be summarized as

h
x

- y(i,l) - L(i - 1,1) - R(i + 1,1) > ; i €S (2)

h
t

- y(i,t) + L(i,t + 1) + R{i,t - 1) - L(i - 1,0 - R(i + l,t) > ; i eC,l < t < T (3)

The question now is, "Do (2) and (3) guarantee that the accumulated payoff is

T
at most V = lif for any feasible searcher path?" Theorem 2 answers this

question in the affirmative.

Theorem 2: Suppose that (2) and (3) hold, with L(»,0 and R(»,t) being

nonincreasing and nondecreasing functions, respectively, on {1, ..., N}, and

L(*,T) = R( 9 ,T) = 0. Let X\, ..., Xj be any sequence of integers such that X\ €So,

1 <x t
<N for 1< t <T, and |x,-xM

|

<1 for t > 1. Then £ f=1
y(* f

,0 ^ £, =1V

Proof: Substitute x
(
for i in the t

th inequality of (2)-(3), and sum all T

inequalities. The result is

T T T

2> - £ y{xt,t) + X [Lfo,* - 1) - L(x
f .i

- i,f - D] +[R(x„f - 1) - R(xM + i,f - D] >

(4)



Since L(vf-l) is nonincreasing and since x t
> x t-l, L(x t,t-l) - L(x t-\-l,t-l) < for

t = 2, ..., T. Similarly R(x
t , t-1) - R(x t-i+l,t-l) < 0. Therefore the third sum in

(4) is nonpositive, and the theorem follows directly.

Theorem 2 implies that the optimized go from LP is the value of the

CSEG, as well as providing probabilistic interpretations for the dual variables

q(i, 1), v(j,k,t+l), and q(i, T). Thus the value of the game and both optimal

strategies can be obtained from LP.

Bothwell (1990) reports on some experiments in using LP as above (as well

as other methods) to solve a one-dimensional CSEG where A(i,j, t) indicates

whether i = j, so that the payoff is "total number of coincidences," with So = {1}

and Eo = {N}. He discovered that the new formulation permitted solutions in

about one fourth of the time of the Eagle-Washburn method, and was thus

able to solve games up to N = 30. His Figures 1-6 describe the solution for

N = 20 and T = 31. The searcher's strategy p(*, #
) is shown digitally in Figure 1

and graphically in Figure 2. Figure 3 is a blowup for t > 21, showing that

p(v31) is finally uniform, that p(l,t) goes through a maximum, and that p(20,t)

goes through a minimum. The latter two features were unanticipated, but

seem to be regular features of the solution for large N. Basically the searcher

"rushes" from cell 1 to cell 20, except that he has a small probability of

reversing his direction after time 10. The cumulative effect of all the small

probabilities is to make p(*,t) uniform for t = 31.

Figures 4-6 show the evader's marginal probabilities q(* ,•). Basically the

evader stays in cell 20, except that there is at all times (even t = 1) a small

probability of making a break for the other side; one is reminded of Auger's



CELLS

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1000 1

2 1 1000 1

3 1 o 1000 1

4 1 1000 1

5 1 1000 1

6 1000 1

7 1000 1

8 1000 1

9 1000 1

10 1000 1

11 500 500 1

12 22 10 491 477 1

13 10 22 13 477 477 1

14 10 9 13 13 19 13 470 452 1

T IS 10 9 13 13 19 13 19 22 441 441 1

I 16 10 9 13 13 15 17 19 22 42 10 415 415 I

M 17 10 5 15 15 15 17 19 22 24 28 33 33 382 382 I

E 18 10 5 15 15 15 17 19 22 24 28 33 33 41 41 342 341 I

19 10 5 IS IS IS 17 19 22 24 28 33 33 41 41 52 52 290 290 1

20 15 15 15 15 17 19 22 24 28 33 33 41 41 52 52 84 55 220 220 I

21 15 15 15 15 17 19 22 24 28 33 33 41 41 52 52 66 73 147 147 147 I

22 19 19 19 19 19 22 24 28 33 33 41 41 52 52 66 73 110 110 110 110 1

23 24 24 24 24 24 24 28 33 33 41 41 52 52 66 73 88 88 88 88 88 I

24 28 28 28 28 28 28 33 33 41 41 52 52 66 73 73 73 73 73 73 73 I

2S 34 34 34 34 34 34 34 41 41 52 52 64 64 64 64 64 64 64 64 64 I

26 39 39 39 39 39 39 41 41 52 52 58 53 S3 58 58 58 58 58 58 58 1

27 45 45 45 45 45 45 45 52 52 58 58 52 52 52 52 52 52 52 52 52 1

28 53 53 53 53 53 53 53 53 58 58 46 46 46 46 46 46 46 46 46 46 I

29 56 56 56 56 56 56 56 56 56 45 45 45 45 45 45 45 45 45 45 45 I

30 1 50 50 SO 50 50 50 SO 50 50 50 50 50 50 50 50 50 50 50 50 50 1

31 1 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 I

Figure 1. Searcher Marginal Probabilities (xlOOO) for 20-Cell CSEG
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Figure 2. Searcher Strategy

Figure 3. Searcher Strategy—Final Time Periods

11



CELLS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 10001

2 1 36 964 I

3 36 36 928 I

4 36 36 36 892 1

5 36 36 36 36 856 |

6 36 36 36 36 37 819 |

7 36 36 36 36 37 37 782 I

8 36 36 36 36 37 37 39 743 1

9 36 36 36 36 37 37 39 39 704 |

10 36 36 36 36 37 37 39 39 41 663 1

11 36 36 36 36 37 37 39 39 41 41 622 I

12 36 36 36 36 37 37 39 39 41 41 44 578 1

13 36 36 36 36 37 37 39 39 41 41 44 44 535 1

14 36 36 36 36 37 37 39 39 41 41 44 44 49 485 I

T 15 36 36 36 36 37 37 39 39 41 41 44 44 49 49 436 I

I 16 36 36 36 36 37 37 39 39 41 41 44 44 49 49 54 382 I

M 17 36 36 36 36 37 37 39 39 41 41 44 44 49 49 54 54 329 I

E 18 36 36 36 36 37 37 39 39 41 41 44 44 49 49 54 54 121 208 1

19 36 36 36 36 37 37 39 39 41 41 44 44 49 49 54 54 60 60 208 1

20 36 36 36 36 37 37 39 39 41 41 44 44 49 49 54 54 60 60 104 104 I

21 48 48 48 37 37 39 39 41 41 44 44 49 49 54 54 60 60 69 69 69 I

22 54 54 54 54 39 39 41 41 44 44 49 49 54 54 60 60 52 52 52 52 I

23 59 59 59 59 59 41 41 44 44 49 49 54 54 60 60 42 42 42 42 42 I

24 63 63 63 63 63 63 44 44 49 49 54 54 60 60 35 35 35 35 35 35 I

25 1 66 66 66 66 66 66 66 49 49 54 54 37 37 37 37 37 37 37 37 37 I

26 78 78 78 78 78 78 49 49 39 39 36 36 36 36 36 36 36 36 36 36 I

27 | 68 68 68 68 68 68 68 45 45 39 39 40 40 40 40 40 40 40 40 40 |

28 59 59 59 59 59 59 59 59 45 45 44 44 44 44 44 44 44 44 44 44 I

29 53 53 53 53 53 53 53 53 53 48 48 48 48 48 48 48 48 48 48 48 I

30 1 47 47 47 47 47 47 47 47 47 47 53 53 53 53 53 53 53 53 53 53 I

31 1 50 50 SO 50 50 50 50 50 50 50 50 50 SO 50 50 SO 50 50 50 50 I

Figure 4. Evader Marginal Probabilities (xlOOO) for 20-Cell CSEG

12



Figure 5. Evader Strategy

Figure 6. Evader Strategy—Final Time Periods

13



(1991) "Wait-and-run" strategies. By time 31 the evader's position, like the

searcher's, is uniform over all 20 cells. It follows (see Eagle and Washburn)

that the game where T > 31 starts the same way as when T = 31, but that it is

optimal for each player to remain stationary for 31 < t < T.

3. GENERALIZED PAYOFF

In this section it will be shown that the payoff in a CSEG can be

T
generalized to £. ^(xj-i/Xf/i/f -i/i/f/0/ with Xq and yo specified. Solution of

such games will require retention of the joint occupancy probabilities, so the

contribution of this section is toward modeling flexibility, rather than

computational efficiency.

Let So = {xo}, Eo = {yo}, and let S(v*) and £(•,•) be as defined in Section 1

except that S(xo,0) and E(yo,0) are now (rather than So and Eo) the sets of cells

feasible for searcher and evader at Time 1. So and Eo are now the (singleton)

sets of cells feasible at time 0. For r > 1 let S
t
be the set of cells feasible for the

searcher at time t . Formally, S
t
= {;': there exists i in S t-\ such that ; is in

S(i, t-1)}. Define E t
similarly. Also, for t> 1 and / € St, let S*(j, t) be the set of

cells from which; is feasible, formally S*(j, t) = [i:j € S (/, t-1)}, and define

£*(•,•) similarly. Finally, let «(•,•,•) be as defined as in Section 1, so that

f{m,n,t)* £A(i,j,m,n,t)u(i,j,t); l<t<T (5)

/€S(i,M)

is the penalty at time t to the evader if he occupies cell m at time t-1 and cell n

T
at time t, and V

tm ,f{yt -VVt't) 1S tne total expected penalty, conditioned on

the evader's track.

14



Consider first the evader's problem of minimizing the total penalty when

"(•/•/•) is known. A dynamic programming recursion is still feasible. Let

h(m ,t) be the minimum total penalty over periods t, ..., T if the evader

occupies cell m at time t-1. Then h(m,t) satisfies the recursion

h{m,t)= min {f{m,n,t) +h(n,t + 1)}; l<£<T,meEM (6)
n€E(m4 -1)

with h(»,T + l) s 0. The minimized total penalty over all T periods is then

Myo/1)/ which quantity the searcher wants to maximize. Since (6) can be

written as linear constraints, maximizing h(yo,l) is a linear program. The

program, with dual variables named in braces as usual, is LP1:

maximizefo(yo/l)

subject to

-f{m,n,t) -h{n,t + l) + h(m,t) <0 ;1 <t <T,m £E
t . v n £E{m,t -1) {v{m,n,t)}

£u(x ,;,l)=i ; Ufo' 1)}

;eS*(U) A:eS(/^)

w(z,/,0>0 ;l<f <T,i eS
t . lf j £S(i,t -1).

In LP1 f(m, n, t) has been written for compactness, even though the expression

on the right-hand side of (5) is meant, and it should be understood that the

term h(n, t+1) is missing when t = T. The second and third sets of constraints

are the feasibility constraints of Eagle and Washburn; as long as u(*,», #
)

satisfies those constraints, there exists a feasible mixed strategy for the searcher

with u(*,*,») as the joint occupancy probabilities. Thus any feasible solution

15



to LP1 corresponds to a lower bound h (yo,l) on the value of the CSEG, and

consequently the same thing can be said of the maximized value.

LP1 and its dual DLP1 possess a pleasing symmetry that was absent in

Section 2. DLP1 is (the g(j,t+l) term is missing when t = T)

minimizeg(xo,l)

subject to

- £ A{i,j, m, n,t)v{m, n, t) - g(j, t + 1) + g(i,t) >

neE(m,t- 1)

;l<t <T,i eS
t . v j eS(i,t -1) {u(i,j,t)}

£p(y ,»4)-i Wyo^)}

J]
v{n,m,t) + £ ^m^^ + l) =0 ;l<f<T,me£

f
{//(m^ + l)}

neE*(m,t) k€E{mt)

v(m,n,t) ^0 ;l<f <7\77j eE
f . lr n €£(m,f -1).

Any function !?(•,*,•) that meets the second and third sets of constraints of

DLP1 can be interpreted as the joint occupancy probabilities of a feasible

mixed strategy for the evader. That being the case, the first set of constraints

assures that a searcher in cell i at time t-1 cannot obtain a payoff larger than

g(i,0 over periods t, ..., T. In particular, g(xo,l) is an upper bound on the

cumulative payoff over all T periods. But the optimized values of g(xo,l) and

h(yo,l) must be equal because LP1 and DLP1 are duals, so either number is the

value of the CSEG. Furthermore the evader's optimal occupancy

16



probabilities can be obtained as the dual variables associated with the first set

of constraints in LP1; it is actually not necessary to solve DLP1.

Example: The revised one-dimensional CSEG

In the standard one-dimensional CSEG described earlier, it is possible

that the two tracks Xj, ..., Xj and y\, ..., yj may cross each other without ever

being exactly coincident, in which case the searcher's score will be because

the objective function simply counts coincidences. To guard against this

possibility, the searcher's leading edge as he moves from 1 to N is spread into

two approximately equal parts, thus making a barrier so wide that the evader

cannot "jump over it" (see Figure 2). This annoying artifact can be eliminated

by redefining the payoff so that the searcher scores a point whenever the two

tracks cross, even if they are never exactly coincident. Specifically, for

l<i,j<N let

1 if/ — w

A(i,j,m,n, t) = jl ifi = nand/ = m (7)

otherwise

Figure 7 shows a GAMS program (Brooke, Kendrick, and Meeraus, 1988) to

solve a 10 cell CSEG with payoff (7) where the initial moves of searcher and

evader are from cells 4 to 5 and 7 to 6, respectively. Figure 8 shows the

associated output. The value of the CSEG is 1.2269 (scaled to 122.69 in Figure

8), to be compared with .8541 in the "standard" game where y4(z,/',m,n,f)

17



ONE DIMENSIONAL CROSSING GAME" 01/22/91 i« :«:5»

GAMS : . 19 I B.I CMS

I OPTIONS SOLPRINT=OFF,ITERLIM=5000.LIMROW=0.LIMCOL=0

4 SET

5 I /C1«C10/

i T /T1»T10/

7 E(I.I.T) HOLDS FEASIBLE TRANSITIONS FOR EVADER

8 SII.T) MOLDS FEASI3LE CELLS FOR SEARCHES

9 SS(I.I.T) HOLDS FEA3I3LE TRANSITIONS FOR SEARCHER

10 ALIAS 1 I .J.<)

:

11 •• SEARCHER STARTS BY MOVING FROM HALF- 1 TO HALF

12 »»» EVADER STARTS BY MOVING FROM HALF-2 TO HALFM

15 PARAMETER

14 HALF:

15 HALF=FLOORC .5-CARDCI )):

U E(I.J.T)=YE3S<AB3(CRD(I)-0RD<J)) LE 1 AND CRD( I )-ORD(T ) GT HALF-2

17 AND CRDCJ)-CRD(T) GT HALF-1):

13 E(I,J.T1S(0RD(I) GE HALF-ORDIT ) )=NO:

19 E(I.J."Tl"):(ORD(I ) EO HALF-2 AND CRD(J) EO HALF-1)=YES:

20 Sil .T)=VE3;(HAL=*0RDCT) GT ORD(D);

21 SII.T)S(HALF GE ORD(I )-ORD(T))=NO;

22 33(1 .J.T-1 )5S(I .T)=YES:CABSCCRD( I)-ORD(J) ) LE 1):

22 3SCI .J."Tl") = VES:(ORDCJ) EO HALF AND ORDCI) EO HALF- 1 ) :

24 VARIABLES

25 HCI.T)

24 U(I.J.T)

28 POSITIVE VARIABLE U:

29 U.FX(I,J,-Tl")»100S(ORDtn EO HALF- 1 AND ORD(J) E3 HALF):

30 ECUATICNS

31 SICET

32 BAL(I.T)

33 OPT(I.J.T)!

34 NDET.. IsE=SUM(IS(ORDCn EO HALF-2 ) .H( I . "Tl" ))

:

35 BAL(I.T-l)5S;i.T). . SUM! JS33C I . J . T- 1 ) . UC I . J . T- 1 )

)

3 6 -SUM (KISS (K.I iT)<U(K.I.T))*E>Oi

37 OPT(I.J.T)5(E(I-J.T))..H(I.T)-H(J,T-l)

33 -SUMtKSSStK.J.TJ.UtKiJ.T))

29 -U(J.I.T)SSG(J.I.T)$(ORDCJ) NE ORD(I))=L»0:

40 MCCEL LINE2EABCH /ALL/:

41 SOL.E LINESEARCH USING LP MAXIMIZING 2;

42 OPTION DEC:malS=4:

4 3 DISPLAY M.L:

44 PARAME"ER

45 PCT) MARGINALS

46 O(J.T) EVADER MARGINALS

47 g;j.") ROUTE TOTALS SEEN BY PURSUER:

48 p(I.tj:s(I .t)=sumik:ss;k. i.tj.u.lck, i .t))i

4 9 o(j.t)=100»3um(l:e( i.j.t).opt.m( i.j.t) ):

50 g(j.t)=100"bal.m(j,t):

51 display p.o.g:

model statistics

5L"-.s of ecjat: us

SLOCKS OF VARIABLES

NOW 2iRC iwL'yisTS

SIN6LE ECI«At;c.nS

s;n^>.e vam.azles

Figure 7. One-Dimensional Crossing Game
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ONE DIMENSIONAL CROSSING GAME«

EXECUTING
01/22/91 16:25:04 PAGE

GAMS 2.19 IBM CMS

43 VARIABLE H.L

CI

C2

CJ

C4

CS

C6

C7

ca

C9

CIO

122.6904

T3 T4 T5 T7 T8 T9 T10

18.1478 16.4247 12.0387 7.2676

18.6177 18.1478 16.4247 13.7618 7.4895

19.0876 19.4009 19.0876 16.4247 13.7618 8.7688

20 8890 21 .9855 21.7506 19.0876 17.7562 13.7618 8.7688

22 .6904 *> W 24.4135 21.7506

25.7450

21.7536

2 3.74 78

18.7548

23.7478

16.2583

18.1307

8.7688

7.446224.4918 25 7450 24.4135

122.6904 31 0709 29.7394 28.7408 31.2373 27.4925 20.3429 7.44o2

122 6904 33.7338 38.7268 36.8544 37.9605 25.0639 17.6177

122.6904 46.2163 55.5782 37.9605 25.0639 13.2132

122.6904 73.1959 58.9366 35.2353 13.2132

51 PARAMETER P MARGINALS

Tl T2 T3 T4 T5 T6 T7 T8 T9 T10

CI 0.4699 1.7231 4.3860 4.7711 7.2676

C2 0.4699 1.2531 2.6629 2.6629 0.2723 7.4895

C3 1 8014 1.2531 2.0629 2.6629 3.9°44 4.9930 8.7o88

C4 1 .8014 1 2531 2.6629 2.6629 3. 9'44 4 . 9930 7.48 a 5 8.7688

CS 100.0000 1.8014 1.2531 1 3315 2.6629 3.9944 4.9930 7.4895 9.3619 8.7688

C6 98. 1986 5.3259 2 6629 3.9944 4.9930 7.48°5 9.3619 12.8967 7.4462

C7 91 .6196 3 9944 4.9930 7.4895 9.3619 17.6177 12.8967 7.4462

C3 88 9566 7.4895 9.3619 17.6177 12.8°67 7.4462 17.6177

C9 76.4741 17.6177 35.2353 12.8 a 67 1 1 .8506 13.2132

CIO 49.4946 14.2593 23.7013 22.0221 13.2132

51 PARAMETER EVADER MARGINALS

Tl T2 T3 T4 T5 T6 T7 T8 T9 T10

CI 9.08 3 6 16.3505 20.3073 20 3073 20.3073

C2 9.C836 7.2669 9.0836 13.7125 20 3073 20.3073

C3 9.0836 7.2669 9.0836 8.5858 9.6112 12 3057 20.3073

C4 9 0836 7.2669 9.08 3 6 8.5858 9.6112 9.2893 q 8926 6.3329

C5 9.0836 7 2669 9.0836 8.5858 9.6112 9.28°3 9.8926 10 7149 6.3329

CS 100.0000 7.2669 9 08 36 8.5858 9.6112 9.2893 9.8926 10.7149 5 3423 6.3029

C7 83.6495 8 5858 9.6112 9.289J 9.8926 13.7149 10.0846 5 0423 5.0423

C8 65 9801 9.28 9 3 9.8926 10.7149 13.8664 5.0423 6 3029 5.0423

C9 47.0797 10.7149 13.3664 6.3029 5.0423 5 0423 5.0423

CIO 26.4722 12.6058 6.3029 6.3029 5 0423 5.042J

CI

C2

C3

C4

CS

C6

C7

C8

C»

CIO

51 PARAMETER G

T2

ROUTE TOTALS SEEN BY PURSUER

T4 T5 T6 T8

93.6229 77.2725 60.9220 40.6147 20.3073

122 6904 86.3561 77.2725 60.9220 40.6147 20.3073

122 6904 95 4397 84.5394 70.0056 54.3272 40.6147 20.3073

122 6904 104 5233 91 8062 79.0892 62.9131 50.2259 32.6130 20.3073

113 6068 99 0731 88 1728 71.4989 59.8370 41.9023 30. 1999 6.3029

106 3400 97 2564 80 0847 69.4482 51.1915 40.0924 17.0178 6.3029

88 6706 79 0594 60.4808 49.9850 27.7328 11.3452 6.3029

69 7701 59.8775

49.1626

38.4477

35.2962

22.6904

21 .42°9

16.3875

16.3875

11.3452

11.3452

10.0846

5.0423

5.0423

5.0423

Figure 8. One-Dimensional Crossing Game
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simply indicates whether ; = n. The prohibition of scoreless crossovers is

evidently a significant change in the rules of the game. Note that the leading

edge of the searcher's marginals (P) is now only 1 cell wide for 1 < t < 6.

The revised game differs qualitatively in an interesting way from the

standard game. Let v^(T) and vN (T) be the values of the standard and revised

games (so i>io(10) = .8541 andi>
10 (10) = 1.2269). Vn(T) is ultimately linear in T

with slope 1/N. For example tfio(T) = 1.2269 + (T-10)/ 10 for T £ 10. The

turnpike theorem of Eagle and Washburn makes this plausible; essentially

either side can guarantee a slope of 1/N by remaining stationary in a

randomly chosen cell. Stationarity has the same virtues in the revised game,

but there is no evidence that v N (T) is ultimately linear. For

T = (12, 14, 16,18, 20), v
l0
(T) is (1.4486, 1.7109, 2.000, 2.1396, 2.3540). The

differences fluctuate about .2, but are never exactly equal to .2. It is possible,

of course, that T = 20 is simply not large enough to observe the onset of

linearity.
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